Playing Vivaldi in Hyperbolic Space
نویسنده
چکیده
Internet coordinate systems have emerged as an efficient method to estimate the latency between pairs of nodes without any communication between them. They avoid the cost of explicit measurements by placing each node in a finite coordinate space and estimating the latency between two nodes as the distance between their positions in the space. In this paper, we adapt the Vivaldi algorithm to use the Hyperbolic space for embedding. Researchers have found promise in Hyperbolic space due to its mathematical elegance and its ability to model the structure of the Internet. We attempt to combine the elegance of the Hyperbolic space with the practical, decentralized Vivaldi algorithm. We evaluate both Euclidean and Hyperbolic Vivaldi on three sets of real-world latencies. Contrary to what we expected, we find that the performance of the two versions of Vivaldi varies with each data set. Furthermore, we show that the Hyperbolic coordinates have the tendency to underestimate large latencies (> 100 ms) but behave better when estimating short distances. Finally, we propose two distributed heuristics that help nodes decide whether to choose Euclidean or Hyperbolic coordinates when estimating distances to their peers. This is the first comparison of Euclidean and Hyperbolic embeddings using the same distributed solver and using a data set with more than 200 nodes.
منابع مشابه
An Extension of Poincare Model of Hyperbolic Geometry with Gyrovector Space Approach
The aim of this paper is to show the importance of analytic hyperbolic geometry introduced in [9]. In [1], Ungar and Chen showed that the algebra of the group $SL(2,mathbb C)$ naturally leads to the notion of gyrogroups and gyrovector spaces for dealing with the Lorentz group and its underlying hyperbolic geometry. They defined the Chen addition and then Chen model of hyperbolic geomet...
متن کاملUniversal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کاملINTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS
In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملHyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کامل